Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(18): e2309733121, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38662546

RESUMO

Animals moving together in groups are believed to interact among each other with effective social forces, such as attraction, repulsion, and alignment. Such forces can be inferred using "force maps," i.e., by analyzing the dependency of the acceleration of a focal individual on relevant variables. Here, we introduce a force map technique suitable for the analysis of the alignment forces experienced by individuals. After validating it using an agent-based model, we apply the force map to experimental data of schooling fish. We observe signatures of an effective alignment force with faster neighbors and an unexpected antialignment with slower neighbors. Instead of an explicit antialignment behavior, we suggest that the observed pattern is the result of a selective attention mechanism, where fish pay less attention to slower neighbors. This mechanism implies the existence of temporal leadership interactions based on relative speeds between neighbors. We present support for this hypothesis both from agent-based modeling as well as from exploring leader-follower relationships in the experimental data.


Assuntos
Comportamento Social , Animais , Comportamento Animal/fisiologia , Liderança , Peixes/fisiologia , Modelos Biológicos , Interação Social , Natação
2.
Phys Rev Lett ; 130(20): 207401, 2023 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-37267542

RESUMO

Understanding the dynamics of opinion depolarization is pivotal to reducing the political divide in our society. We propose an opinion dynamics model, which we name the social compass model, for interdependent topics represented in a polar space, where zealots holding extreme opinions are less prone to change their minds. We analytically show that the phase transition from polarization to consensus, as a function of increasing social influence, is explosive if topics are not correlated. We validate our theoretical framework through extensive numerical simulations and recover explosive depolarization also by using initial opinions from the American National Election Studies, including polarized and interdependent topics.

3.
Phys Rev E ; 106(4-1): 044601, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36397465

RESUMO

We study the effects of animal social networks with a weighted pattern of interactions on the flocking transition exhibited by models of self-organized collective motion. We consider variations of traditional models of collective motion in which interactions between individuals are mediated by static complex weighted networks, representing patterns of social interactions. For a model representing dynamics on a one-dimensional substrate, application of a heterogeneous mean-field theory provides a phase diagram as function of the heterogeneity of the network connections and the correlations between weights and degree. In this diagram we observe two phases, one corresponding to the presence of a transition and other to a transition suppressed in an always ordered system, already observed in the nonweighted case. Interestingly, a third phase, with no transition in an always disordered state, is also obtained. These predictions, numerically recovered in computer simulations, are also fulfilled for the more realistic Vicsek model, with movement in a two-dimensional space. Additionally, we observe at finite network sizes the presence of a maximum threshold for particular weight configurations, indicating that it is possible to tune weights to achieve a maximum resilience to noise effects. Simulations in real weighted animal social networks show that, in general, the presence of weights diminishes the value of the flocking threshold, thus increasing the fragility of the flocking state. The shift in the threshold is observed to depend on the heterogeneity of the weight pattern.

4.
Sci Rep ; 12(1): 15950, 2022 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-36153354

RESUMO

Protecting interventions of many types (both pharmaceutical and non-pharmaceutical) can be deployed against the spreading of a communicable disease, as the worldwide COVID-19 pandemic has dramatically shown. Here we investigate in detail the effects at the population level of interventions that provide an asymmetric protection between the people involved in a single interaction. Masks of different filtration types, either protecting mainly the wearer or the contacts of the wearer, are a prominent example of these interventions. By means of analytical calculations and extensive simulations of simple epidemic models on networks, we show that interventions protecting more efficiently the adopter (e.g the mask wearer) are more effective than interventions protecting primarily the contacts of the adopter in reducing the prevalence of the disease and the number of concurrently infected individuals ("flattening the curve"). This observation is backed up by the study of a more realistic epidemic model on an empirical network representing the patterns of contacts in the city of Portland. Our results point out that promoting wearer-protecting face masks and other self-protecting interventions, though deemed selfish and inefficient, can actually be a better strategy to efficiently curtail pandemic spreading.


Assuntos
COVID-19 , Pandemias , COVID-19/epidemiologia , COVID-19/prevenção & controle , Humanos , Pandemias/prevenção & controle , SARS-CoV-2
5.
Phys Rev E ; 105(5-1): 054310, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35706250

RESUMO

Percolation on networks is a common framework to model a wide range of processes, from cascading failures to epidemic spreading. Standard percolation assumes short-range interactions, implying that nodes can merge into clusters only if they are nearest neighbors. Cumulative merging percolation (CMP) is a percolation process that assumes long-range interactions such that nodes can merge into clusters even if they are topologically distant. Hence, in CMP clusters do not coincide with the topologically connected components of the network. Previous work has shown that a specific formulation of CMP features peculiar mechanisms for the formation of the giant cluster and allows one to model different network dynamics such as recurrent epidemic processes. Here we develop a more general formulation of CMP in terms of the functional form of the cluster interaction range, showing an even richer phase transition scenario with competition of different mechanisms resulting in crossover phenomena. Our analytic predictions are confirmed by numerical simulations.

6.
Sci Rep ; 12(1): 10783, 2022 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-35750698

RESUMO

Behavioral contagion and the presence of behavioral cascades are natural features in groups of animals showing collective motion, such as schooling fish or grazing herbivores. Here we study empirical behavioral cascades observed in fish schools defined as avalanches of consecutive large changes in the heading direction of the trajectory of fish. In terms of a minimum turning angle introduced to define a large change, avalanches are characterized by distributions of size and duration showing scale-free signatures, reminiscent of self-organized critical behavior. We observe that avalanches are generally triggered by a small number of fish, which act as effective leaders that induce large rearrangements of the group's trajectory. This observation motivates the proposal of a simple model, based in the classical Vicsek model of collective motion, in which a given individual acts as a leader subject to random heading reorientations. The model reproduces qualitatively the empirical avalanche behavior observed in real schools, and hints towards a connection between effective leadership, long range interactions and avalanche behavior in collective movement.


Assuntos
Comportamento Social , Natação , Animais , Comportamento Animal , Peixes , Liderança , Modelos Biológicos
7.
Phys Rev E ; 104(1-1): 014306, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34412235

RESUMO

In the study of epidemic dynamics a fundamental question is whether a pathogen initially affecting only one individual will give rise to a limited outbreak or to a widespread pandemic. The answer to this question crucially depends not only on the parameters describing the infection and recovery processes but also on where, in the network of interactions, the infection starts from. We study the dependence on the location of the initial seed for the susceptible-infected-susceptible epidemic dynamics in continuous time on networks. We first derive analytical predictions for the dependence on the initial node of three indicators of spreading influence (probability to originate an infinite outbreak, average duration, and size of finite outbreaks) and compare them with numerical simulations on random uncorrelated networks, finding a very good agreement. We then show that the same theoretical approach works fairly well also on a set of real-world topologies of diverse nature. We conclude by briefly investigating which topological network features determine deviations from the theoretical predictions.

8.
Chaos ; 31(4): 043116, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34251260

RESUMO

Systems composed of interacting self-propelled particles (SPPs) display different forms of order-disorder phase transitions relevant to collective motion. In this paper, we propose a generalization of the Vicsek model characterized by an angular noise term following an arbitrary probability density function, which might depend on the state of the system and thus have a multiplicative character. We show that the well established vectorial Vicsek model can be expressed in this general formalism by deriving the corresponding angular probability density function, as well as we propose two new multiplicative models consisting of bivariate Gaussian and wrapped Gaussian distributions. With the proposed formalism, the mean-field system can be solved using the mean resultant length of the angular stochastic term. Accordingly, when the SPPs interact globally, the character of the phase transition depends on the choice of the noise distribution, being first order with a hybrid scaling for the vectorial and wrapped Gaussian distributions, and second order for the bivariate Gaussian distribution. Numerical simulations reveal that this scenario also holds when the interactions among SPPs are given by a static complex network. On the other hand, using spatial short-range interactions displays, in all the considered instances, a discontinuous transition with a coexistence region, consistent with the original formulation of the Vicsek model.

9.
Sci Rep ; 10(1): 21639, 2020 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-33303816

RESUMO

The spectrum of the non-backtracking matrix plays a crucial role in determining various structural and dynamical properties of networked systems, ranging from the threshold in bond percolation and non-recurrent epidemic processes, to community structure, to node importance. Here we calculate the largest eigenvalue of the non-backtracking matrix and the associated non-backtracking centrality for uncorrelated random networks, finding expressions in excellent agreement with numerical results. We show however that the same formulas do not work well for many real-world networks. We identify the mechanism responsible for this violation in the localization of the non-backtracking centrality on network subgraphs whose formation is highly unlikely in uncorrelated networks, but rather common in real-world structures. Exploiting this knowledge we present an heuristic generalized formula for the largest eigenvalue, which is remarkably accurate for all networks of a large empirical dataset. We show that this newly uncovered localization phenomenon allows to understand the failure of the message-passing prediction for the percolation threshold in many real-world structures.

10.
Phys Rev E ; 100(4-1): 042305, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31770903

RESUMO

We investigate the effects of long-range social interactions in flocking dynamics by studying the dynamics of a scalar model of collective motion embedded in a complex network representing a pattern of social interactions, as observed in several social species. In this scalar model we find a phenomenology analogous to that observed in the classic Vicsek model: In networks with low heterogeneity, a phase transition separates an ordered from a disordered phase. At high levels of heterogeneity, instead, the transition is suppressed, and the system is always ordered. This observation is backed up analytically by the solution of a modified scalar model within an heterogeneous mean-field approximation. Our work extends the understanding of the effects of social interactions in flocking dynamics and opens the path to the analytical study of more complex topologies of social ties.

11.
Phys Rev E ; 98(2-1): 022303, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30253553

RESUMO

We study the behavior of a generalized consensus dynamics on a temporal network of interactions, the activity-driven network with attractiveness. In this temporal network model, agents are endowed with an intrinsic activity a, ruling the rate at which they generate connections, and an intrinsic attractiveness b, modulating the rate at which they receive connections. The consensus dynamics considered is a mixed voter and Moran dynamics. Each agent, either in state 0 or 1, modifies his or her state when connecting with a peer. Thus, an active agent copies his or her state from the peer (with probability p) or imposes his or her state to him or her (with the complementary probability 1-p). Applying a heterogeneous mean-field approach, we derive a differential equation for the average density of voters with activity a and attractiveness b in state 1, which we use to evaluate the average time to reach consensus and the exit probability, defined as the probability that a single agent with activity a and attractiveness b eventually imposes his or her state to a pool of initially unanimous population in the opposite state. We study a number of particular cases, finding an excellent agreement with numerical simulations of the model. Interestingly, we observe a symmetry between voter and Moran dynamics in pure activity-driven networks and their static integrated counterparts that exemplifies the strong differences that a time-varying network can impose on dynamical processes.

12.
Phys Rev Lett ; 120(6): 068303, 2018 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-29481262

RESUMO

Social relationships characterize the interactions that occur within social species and may have an important impact on collective animal motion. Here, we consider a variation of the standard Vicsek model for collective motion in which interactions are mediated by an empirically motivated scale-free topology that represents a heterogeneous pattern of social contacts. We observe that the degree of order of the model is strongly affected by network heterogeneity: more heterogeneous networks show a more resilient ordered state, while less heterogeneity leads to a more fragile ordered state that can be destroyed by sufficient external noise. Our results challenge the previously accepted equivalence between the static Vicsek model and the equilibrium XY model on the network of connections, and point towards a possible equivalence with models exhibiting a different symmetry.


Assuntos
Modelos Biológicos , Comportamento Social , Animais , Dinâmica Populacional
13.
Phys Rev E ; 97(1-1): 012313, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29448478

RESUMO

Many progresses in the understanding of epidemic spreading models have been obtained thanks to numerous modeling efforts and analytical and numerical studies, considering host populations with very different structures and properties, including complex and temporal interaction networks. Moreover, a number of recent studies have started to go beyond the assumption of an absence of coupling between the spread of a disease and the structure of the contacts on which it unfolds. Models including awareness of the spread have been proposed, to mimic possible precautionary measures taken by individuals that decrease their risk of infection, but have mostly considered static networks. Here, we adapt such a framework to the more realistic case of temporal networks of interactions between individuals. We study the resulting model by analytical and numerical means on both simple models of temporal networks and empirical time-resolved contact data. Analytical results show that the epidemic threshold is not affected by the awareness but that the prevalence can be significantly decreased. Numerical studies on synthetic temporal networks highlight, however, the presence of very strong finite-size effects, resulting in a significant shift of the effective epidemic threshold in the presence of risk awareness. For empirical contact networks, the awareness mechanism leads as well to a shift in the effective threshold and to a strong reduction of the epidemic prevalence.

14.
Sci Rep ; 7(1): 8597, 2017 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-28819293

RESUMO

Multi-layered networks represent a major advance in the description of natural complex systems, and their study has shed light on new physical phenomena. Despite its importance, however, the role of the temporal dimension in their structure and function has not been investigated in much detail so far. Here we study the temporal correlations between layers exhibited by real social multiplex networks. At a basic level, the presence of such correlations implies a certain degree of predictability in the contact pattern, as we quantify by an extension of the entropy and mutual information analyses proposed for the single-layer case. At a different level, we demonstrate that temporal correlations are a signature of a 'multitasking' behavior of network agents, characterized by a higher level of switching between different social activities than expected in a uncorrelated pattern. Moreover, temporal correlations significantly affect the dynamics of coupled epidemic processes unfolding on the network. Our work opens the way for the systematic study of temporal multiplex networks and we anticipate it will be of interest to researchers in a broad array of fields.

15.
Phys Rev E ; 95(5-1): 052311, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28618557

RESUMO

Methods connecting dynamical systems and graph theory have attracted increasing interest in the past few years, with applications ranging from a detailed comparison of different kinds of dynamics to the characterization of empirical data. Here we investigate the effects of the (multi)fractal properties of a signal, common in time series arising from chaotic dynamics or strange attractors, on the topology of a suitably projected network. Relying on the box-counting formalism, we map boxes into the nodes of a network and establish analytic expressions connecting the natural measure of a box with its degree in the graph representation. We single out the conditions yielding to the emergence of a scale-free topology and validate our findings with extensive numerical simulations. We finally present a numerical analysis on the properties of weighted and directed network projections.

16.
Phys Rev E ; 95(2-1): 022301, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28298010

RESUMO

The generalized H(n) Hirsch index of order n has been recently introduced and shown to interpolate between the degree and the K-core centrality in networks. We provide a detailed analytic characterization of the properties of sets of nodes having the same H(n), within the annealed network approximation. The connection between the Hirsch indices and the degree is highlighted. Numerical tests in synthetic uncorrelated networks and real-world correlated ones validate the findings. We also test the use of the Hirsch index for the identification of influential spreaders in networks, finding that it is in general outperformed by the recently introduced nonbacktracking centrality.

17.
R Soc Open Sci ; 4(11): 170623, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29291057

RESUMO

The cryptocurrency market surpassed the barrier of $100 billion market capitalization in June 2017, after months of steady growth. Despite its increasing relevance in the financial world, a comprehensive analysis of the whole system is still lacking, as most studies have focused exclusively on the behaviour of one (Bitcoin) or few cryptocurrencies. Here, we consider the history of the entire market and analyse the behaviour of 1469 cryptocurrencies introduced between April 2013 and May 2017. We reveal that, while new cryptocurrencies appear and disappear continuously and their market capitalization is increasing (super-)exponentially, several statistical properties of the market have been stable for years. These include the number of active cryptocurrencies, market share distribution and the turnover of cryptocurrencies. Adopting an ecological perspective, we show that the so-called neutral model of evolution is able to reproduce a number of key empirical observations, despite its simplicity and the assumption of no selective advantage of one cryptocurrency over another. Our results shed light on the properties of the cryptocurrency market and establish a first formal link between ecological modelling and the study of this growing system. We anticipate they will spark further research in this direction.

18.
Phys Rev E ; 94(2-1): 022316, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27627326

RESUMO

We present an exhaustive mathematical analysis of the recently proposed Non-Poissonian Activity Driven (NoPAD) model [Moinet et al., Phys. Rev. Lett. 114, 108701 (2015)PRLTAO0031-900710.1103/PhysRevLett.114.108701], a temporal network model incorporating the empirically observed bursty nature of social interactions. We focus on the aging effects emerging from the non-Poissonian dynamics of link activation, and on their effects on the topological properties of time-integrated networks, such as the degree distribution. Analytic expressions for the degree distribution of integrated networks as a function of time are derived, exploring both limits of vanishing and strong aging. We also address the percolation process occurring on these temporal networks, by computing the threshold for the emergence of a giant connected component, highlighting the aging dependence. Our analytic predictions are checked by means of extensive numerical simulations of the NoPAD model.

19.
Phys Rev E ; 93(3): 032314, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27078373

RESUMO

We consider a general criterion to discern the nature of the threshold in epidemic models on scale-free (SF) networks. Comparing the epidemic lifespan of the nodes with largest degrees with the infection time between them, we propose a general dual scenario, in which the epidemic transition is either ruled by a hub activation process, leading to a null threshold in the thermodynamic limit, or given by a collective activation process, corresponding to a standard phase transition with a finite threshold. We validate the proposed criterion applying it to different epidemic models, with waning immunity or heterogeneous infection rates in both synthetic and real SF networks. In particular, a waning immunity, irrespective of its strength, leads to collective activation with finite threshold in scale-free networks with large degree exponent, at odds with canonical theoretical approaches.

20.
Sci Rep ; 6: 18847, 2016 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-26754565

RESUMO

The spectral properties of the adjacency matrix provide a trove of information about the structure and function of complex networks. In particular, the largest eigenvalue and its associated principal eigenvector are crucial in the understanding of nodes' centrality and the unfolding of dynamical processes. Here we show that two distinct types of localization of the principal eigenvector may occur in heterogeneous networks. For synthetic networks with degree distribution P(q) ~ q(-γ), localization occurs on the largest hub if γ > 5/2; for γ < 5/2 a new type of localization arises on a mesoscopic subgraph associated with the shell with the largest index in the K-core decomposition. Similar evidence for the existence of distinct localization modes is found in the analysis of real-world networks. Our results open a new perspective on dynamical processes on networks and on a recently proposed alternative measure of node centrality based on the non-backtracking matrix.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...